くみあラボへようこそ! #
くみあラボへようこそ!


わあ……!すごいの!
(まあ、私の家なんだけど。)

早稲くみあは石浦いおりと椎木しいなの 2 人を自宅に招待した。くみあの自宅は VTuber 活動のために大きく改装してあり、設備が充実している。もちろん、組合せ論の本もたくさん置かれている。
EC を読もう #
いおりとしいなは図書館で借りた Enumerative Combinatorics (EC) を持参した。なお、くみあも同じ本を持っている。

それで、いーちゃんと一緒に EC を読もうとしたんだけど、難しくって読めなかった。顧問の先生、どうしたらいいかな?
これは EC に限らないんだけど、数学書っていうのは基本難しいものです。私も周りのみんなも、数学書は難しいって言ってますからね。


じゃあ、いおりたちには無理ってこと……!?
そんなことはないですよ。難しいからこそ、じっくり読むのが大切です。それに、私が顧問の先生としてサポートするので、大丈夫ですよ。


ありがとう!くみあせんせー!
数え上げってなんだろう? #
3 人は EC を眺める。英語と数式がびっしりと書かれており、いおりとしいなは難しくて再び諦めそうになる。そこで、くみあがサポートを入れる。
数え上げについて書いてありますね。

くみあは数え上げでどのような問題を扱うのかを説明する。例えば、3 人が一列に並ぶ方法の数、5 人が一列に並ぶ方法の数といった問題がある。これを一般化すると、 人が一列に並ぶ方法の数を求める問題になる。
この問題の答えは 通りである。省略して と書くこともある。
このように、数え上げの問題はあるものの個数を求める問題といえる、とくみあは説明した。
でも、このように答えが綺麗な式で書ける問題ばかりではないですよ。


そうなんだ。

そもそも、きれいな式ってどんな式?
いい質問ですね。実は、どんな式がいいかというのは時と場合によって変わってきます。

くみあは例としてフィボナッチ数列を紹介する。 段ある階段を、1 段または 2 段上ることを繰り返して上る。上り方は何通りあるかという問題である。

いおりも階段飛ばししたことあるの!

危ないよ。
段の階段の上り方の個数を とおくと、 かつ という公式がある。もう 1 つの公式は
である。
さて、どちらがいい公式でしょうか?


とか入ってて難しそうな数式……。最初の公式の方がきれいじゃない?

でも 2 つめの公式のほうが、答え!って感じがするの。
2 人の意見が分かれていることからも、数え上げ問題には様々な観点があり、それだけ奥深いということを示唆している。
ちなみに、私はコンピュータを使った計算という見方からも研究をしてます。たとえばさっきの例だと、 をコンピュータで扱うには工夫が必要ですね。小数で扱おうとすると無限に続いてしまいますから。ですが の方では簡単に計算ができます。このように、歴史の長い数え上げ問題もコンピュータの見方をすれば新しい発見があるんです。

いおりとしいなの 2 人は目を輝かせている。数え上げを探究したいという気持ちがますます高まっている。
さあ、一緒に数え上げを学んでいきましょう!


いおりたちの探究は始まったばかりなの!